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S H E A R  S T R A I N  EFFECTS ON THE T H E O R E T I C A L  S T R E N G T H  

O F  A N  A T O M I C  LATTICE 

N. S. Astapov and V. M. Kornev UDC 539.3 

A four-atomic unit cell corresponding to a close-packed layer of  atoms is considered. It is shown 
that with occurrence of a shear the system prematurely loses stability. It is concluded that in 
Novozhilov-type integral criteria for  brittle strength, it is reasonable to take into account shear 
strains. 

Modified Novozhilov's discrete criteria of brittle strength [1] use the theoretical strength of crystals, 
which is commonly estimated ignoring shear strains. The shear strains occurring when an ideal crystal is 
stretched along the symmetry axis of the atomic lattice results in a premature  shear deformation [2, 3]. 
Macmillan and Kelly [4] performed a statistical analysis of the stability of an ideal crystal using the Newtonian 
approach and described the interatomic interaction by semiempirical potentials such as the Lennard-Jones and 
Born-Mayer potentials. In this case, in studies of the effects of external conservative forces on the mechanical 
behavior of crystals, the sum of the force potential and effective energy of interatomic interactions is chosen 
as a function of the total potential energy of the system. As noted in [3], such an approach often provides 
appropriate information for description of the macroscopic mechanical properties of a solid. 

In the present work, a four-atomic unit cell corresponding to a close-packed layer of atoms is considered. 
The shear strain effects on the stability of a rhombic four-atomic cell stretched along the diagonal under 
homogeneous deformation is studied within the framework of the approach described in [3, 5]. Interatomic 
interaction is taken into account by the Morse potential [6, 7]. Although for almost all metals, the interatomic 
forces are not central even approximately, most of the energy change due to changes in the atomic configuration 
at constant atomic volume can be described in terms of the central interaction [6-8]. Therefore, even if 
noncentral interactions make-a substantial contribution to the energy of the atomic lattice, it is still possible 
to obtain satisfactory estimates of some properties using a simple model of pair central interactions [1, 7, 9]. 

The system studied exhibits unstable supercritical behavior. It is found that  with occurrence of a shear, 
the system prematurely loses stability and the critical point on the strain line is determined by the parameters 
of the Morse potential function. Therefore, in Novozhilov's integral criteria of brittle strength, it is reasonable 
to use a refined estimate of the theoretical strength of crystals taking into account shear strains. 

F o r m u l a t i o n  of t he  P r o b l e m .  Let us assume that the potential energy of interaction between any 
two atoms is a function w(s), which is a spherically symmetric two-body interaction potential for which the 
force of interaction is directed along the line connecting their centers (s is the distance between the centers). 
Below, we confine ourselves to considering the interaction of only the two nearest atoms since we cannot 
state for sure that the Morse potential adequately describes the atomic field at distances exceeding several 
distances between the nearest neighboring atoms [6]. In this case, it is assumed that only planar, kinematically 
admissible displacement fields with homogeneous deformations and only two degrees of freedom can occur in 
crystals. We study the stability in tension of a planar four-atomic cell corresponding to a close-packed layer of 
atoms. In particular, we consider the case of tension in the direction perpendicular to the close-packing where 
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the stress applied to the layer tends to separate the close-packed chains of a toms with probable rotation of 
them but with no change in the chain length. 

Since for an unloaded crystal, the total force acting on each atom is equal to zero, the crystal can be 

dw I' = 0. As w(s), we take the Morse regarded as a close-packed lattice of spheres with diameter  g, where ~ . s = g  

potential [1, 6, 7] 

w(s) = D[exp(-2a(s  - -  g)) - 2 e x p ( - a ( s  - 9))]. 

Assuming that  3' = s]g (3" is the dimensionless translation),  b = a 9 and 2D = A9 -6, we obtain 

v(3") = w(3"g)= Ag-6[2 e x p ( - 2 b ( 3 " -  1 ) ) -  e x p ( - b ( 7 -  1))]. (1) 

Here D, a, and 9, and, hence, A and b are parameters determined by the type of atoms. The force of interaction 
T between two atoms is given by the equality 

T = d_.w_w = _abg_7[ex p (-2b(3' - 1)) - exp (-b(3' - 1))], (2) 
ds 

and for 3' = 3', = 1 + In 2/b, it reaches the maximum :/'2 = Ab/(497) or, in dimensionless form, 

T297 1 
T, = A---~ = 4" (3) 

When some assumptions [3] are satisfied, the total  potential energy of an infinite planar layer is 
proportional to the energy V.(0, p) of a unit cell consisting of four atoms. Figure la  shows an unstrained 
cell and Fig. lb  (taken from [3, Fig. 69]) shows a rhombic cell stretched along the diagonal. 

The strain of the unit cell can be determined using the independent generalized coordinates 0 and p; 
0 = 0 for an ideal system (ignoring shear). We introduce two independent variables (~ and/3 (Fig. lb): 

a 2 = 1/4 + p2 _ psin0,  /3 2 = 1/4 + p2 + psin0.  (4) 

Let us consider the deformation of the system under  the action of the forces F and L (Fig. l a ) .  The 
function of the total potential energy of the unit cell can be written in the form [3] 

V(O, p, F, M) = 2v(a(O, p)) + 2v(/3(0, p)) - 2Fpg - MO, 

where M = Lg is the moment  of the force L. The partial first-order derivatives of the function V with respect 
to 0 and p are Vo = 2v,~ao + 2v~/3o - M and Vp = 2v,~ap + 2vz/3p - 2F9, respectively. Here va and vZ are the 
derivatives of function (1) with respect to 3': 

v7 = -Ab9-6[exp ( - 2 b ( ~ / -  1) - exp (-b(3' - 1))]. (5) 

The partial derivatives of the functions a(O, p) and/3(0, p) are obtained from relations (4) as derivatives of the 
implicit functions. For an ideal system with no shear, we have M = 0. Then, f rom the equations of equilibrium 
1/0 = 0 and V 0 = 0, we can find the basic solution with 0 = 0. It is determined from the equation 

2v73' p = F9, (6) 
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where 7 is replaced by a or ft. We note that  for 0 = O, we have a = fl, ap = tip and 

= = p =  /3'2 _ i / 4 .  

D i s c u s s i o n  of  Resu l t s .  Using (5) and (6), for the dependence of the force P on the strain 3' of a 
four-atomic cell we finally obtain 

Fg7 2v~"%g6 - ~/43' 2 - l[exp ( - b ( 3 , -  1 ) ) -  exp (-2b(3, - 1))]/3'. (7) P =- P(3") - Ab ":" 

The force as a function of strain is shown in Fig. 2. Curves 1 and 3 correspond to a four-atomic cell 
with b = 0.5 and 1 [see relation (7)], and curve 2 refers to a pair of atoms with b = 0.5 [see relation (2)]. 
The extrema on curves 1 and 3 are denoted by the points B1 and B3, to which the strain parameters 3"1 
and 3""3 and the forces Pml and P"3 correspond; the points C1 and C3 correspond to the critical strain 
parameters 3,c 1 and 3'c3 and critical forces P c  1 and Pc3 at which the system loses shear stability. The critical 
strain parameter  3'. and the force T. -- 1/4 [see relation (3)] correspond to the maximum point z on curve 
2. Because of the symmetry  of the system, the derivative V0p is equal to zero for each value of b on the main 
equilibrium trajectory. Therefore, the stability of the equilibrium trajectory is determined by two stability 
coefficients V0e and Vpp [3]. At the maximum point B(3"m, Pro) on the equilibrium trajectory (the points B1 
and B3 in Fig. 2), the coefficient Vpp vanishes. Because on the main equilibrium trajectory,/~ = 0 and, hence, 
app =/~pp, the condition Vpp = 0 leads to the equality 

v . .  = + = 4{Ab2g- [2exp(-2b(3' - 1 ) ) -  e x p ( - b ( 3 " -  1))](p/3") 2 

-A bg -6[ exp ( -2b (3"  - 1)) - exp(-b(3' - 1))1(72 - p2)/3"2} = 0. 

Hence, since 3' 2 = 1/4 + p2 at /? = 0, for the coordinate 3' = 3"" of the maximum point B(Tm, Pro) of the 
equilibrium tra jectory we obtain the equation 

~ " ( 4 7 ~  - 1) - 1 
exp(-b(3 '~  - 1)) = 2~m(43'~ -- 1) -- 1" (S) 

We note that  the coordinate 3' = 3"" of the critical point B(3'm, P,n) can be found using expression 
(7) and the condition that the derivative of the function P(3') with respect to 3' is equal to zero. The point 
C(7c ,  Pc )  at which the coefficient V00 turns to zero is a bifurcation point (the points C1 and C3 in Fig. 2), 
at which shear strains with nonzero values of 0 can develop. The dimensionless displacement 3'c, whose value 
depends on the parameters of the potential function, corresponds to this second critical point. Setting V00 = 0, 
we obtain the corresponding critical value 3' = 3'c from the equation v.r. r - v7/3" = 0 or, after some obvious 
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TABLE i 

b 7,,~ 

0.5 2.424 

1 1.721 

2.076 1.348 

4 1.179 

6 1.119 

8.46 

2.386 

1.693 

1.334 

1.173 

1.116 

7c 

1.770 

1.467 

1.262 

1.150 

1.104 

P~ 

0.489 

0.478 

0.464 

0.453 

0.447 

Pc 

0.417 

0.440 

0.447 

0.446 

0.443 

Ap/p,,~, % 

14.7 

7.9 

3.7 

1.5 

0.9 

0.4 

transformations, from the equation 

+ i 
exp ( - b ( T c  - 1)) = + 1 '  (9) 

which depends on the parameter  b, which characterizes the type of atoms. 
Let us show that  the bifurcation point C, which corresponds to occurrence of shear strains, appears 

before the main equilibrium trajectory reaches the maximum point B. To this end, we first prove that for 
any b > 0, the value of 3'c determined from Eq. (9) is smaller than 3', = 1 + in 2/b, at which the force of 
interaction T(7)  of two atoms reaches a maximum. A plot (curve 2) of the function T(3")gT/(Ab) for b = 0.5 
is shown in Fig. 2, where the maximum point Z(7 ,  , T,) = Z(7,,  1/4) is denoted according to Eq. (3). We note 
that  the function f ( 7 )  = exp(-b(~, - 1)) is decreasing for b > 0. Since for 3'c > 0, the inequality 

b 7 c + 1  1 1 1 
exp ( - b ( T c  - 1)) = 2b~c + 1 - 2 + 2(2b3'c + 1) > 2 = exp ( -b (7 ,  - 1)) 

is valid, we obtain 7c  < 7*. We then show that  for b > 1/6, the inequality 7, < 7m is valid. Since 7/> 1 from 
physical considerations, we have 267(472 - 1) - 1 > 0 for b > 1/6. Therefore, using Eq. (8) we have 

bTm(47~m - 1) - 1 1 bTm(472m - 1) 1 
exp (-b(Tm - 1)) = 267m(47~ - 1) - 1 = 5 - 2(2/rTr.(472m -- 1) -- 1) < 2 = exp ( - b ( 7 .  -- 1)) 

and taking into account that  the function f ( 7 )  --- exp( -b(7  - 1)) decreases for b > 0, we obtain 3', < 7m- 
Thus, for b > 1/6, the chain of inequalities 7v < % < 7m is proved analytically, i.e., it is shown that with 
occurrence of a shear, the system premature ly  loses stability and the corresponding critical point 3' = 3'c 
on the strain curve is determined by the parameters of the potential function chosen. Thus, if the Morse 
potential is chosen, 3'm and 3'c are determined from relations (8) and (9), respectively, and they depend on 
the parameter b, which characterizes the type of atom. However, for the Lennard-Jones potential,  we have 
7c  = (7/4) 1/6 < (13/7) 1/6 = 3'm irrespective of the type of atoms in the lattice [3]. We note that  in this case 
the value of ((Prn - Pc)/Pro)" 100% ~, 0.73% is constant, does not depend on the type of atom, and can be 
substantially smaller than that  for the Morse potential, for example, for b < 4. 

For A = 1, g = 1, and various b (0.5 ~< b ~< 8.46), the values of 3'm and 7c  and the corresponding 
loads Pm and Pc determined from formula (7) are given in Table 1. The values of 3', = 1 + In 2/b are also 
given here; the value T, = 1/4 which, according to (3), corresponds to them for any b is omit ted.  We note 
that for any b, the da ta  in Table 1 satisfy the inequality Pm< 2P,,  which can be easily explained by the 
physical meaning of the initial model. The values of the parameter b are borrowed from various papers on 
solid-state physics (see [9] and the references in it). In [9], these data  were used to analyze the  influence of 
impurity atoms on the  reduction in the strength of stretched atomic chains. In the last column, the relative 
deviation of the load Pc from Pm in percent is given: ((Pro - Pc)/Pro)" 100%. The data of Table 1 show that 
for b ~ 2, the force Pc has an extremum. In this case, the four-atomic cell is most stable against shear when 
the interatomic interaction is described by the Morse potential. 
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Conclus ions .  The load Pc at which shear strain occurs can be 7.9% smaller than the load P,n at 
which the ideal system begins to fail. The loads Pc and Prn correspond to the physical parameter b = 1. 
We emphasize that for the nonideal system, this difference can exceed 25-30% (see [3, Fig. 70]). Therefore, 
in calculating the theoretical strength, it is reasonable to introduce a correction for shear strains, and in 
Novozhilov's integral criteria of brittle strength, it is expedient to use a refined estimate of the theoretical 
strength of crystals. 

R e m a r k .  The nonideality of a system [3] can be modeled by the presence of an impurity atom in the 
cell. In such a system, loss of stability occurs much earlier. For example, for a chain of atoms, the critical 
loads for the ideal system and the system with impurity atoms can differ by one or two orders of magnitude 
[9]. We note that references on the real physical potentials and calculation results for ten different pairs of 
atoms are given in [9]. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 95-01- 
00870). 
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